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Potential barriers occur on binding energy curves of certain diatomic molecule-ions. The 
origin of such barriers is discussed for the prototype case consisting of a single electron moving in 
the field of two nuclei with equal but arbitrary charges. A procedure for determining stationary points 
on the binding energy curves is developed and applied to the lowest Zg and E u states. The binding 
energy is expressed as a sum of promotional, coulombic and resonance contributions, and these 
components are studied as functions of the internuclear distance. The analysis demonstrates that the 
energy maxima on the Xg curves arise from long-range coulombic repulsions, and are unrelated to 
centrifugal potentials of nuclear motion and the mechanisms of predissociation. In addition, the 
analysis shows that long-range attractions can occur and introduce binding character into normally 
antibinding states. 

In den Bindungsenergie-Kurven gewisser zweiatomiger Molek/il-Ionen treten Potential-Schwellen 
auf. Der Ursprung solcher Barrieren wird for den Prototyp diskutiert, der aus einem einzigen Elektron 
im Feld zweier Kerne mit beliebigen, gleichen Ladungen besteht. 

Ein Verfahren zur Bestimmung station~irer Punkte auf den Bindungsenergie-Kurven wird ent- 
wickelt und auf die niedrigsten Z f  und Xu-Zust~inde angewendet. Die Bindungsenergie wird als eine 
Summe von Promotions-, Coulomb- und Resonanz-Anteilen dargestellt; der Verlauf dieser Anteile 
in Abh~ingigkeit vom Kernabstand wird untersucht. Die Analyse zeigt, dab die Energiemaxima auf 
Zg-Kurven vonde r  Coulombabstol3ung fOr grol3e Abst~inde herrtihren, und dal3 sic nicht in Be- 
ziehung zu Zentrifugalpotentialen der Kernbewegung und dem Mechanismus der Pr~idissoziation 
stehen. Weiterhin zeigt die Untersuchung, dal3 auch Anziehung for groBe Abst~inde auftreten kann, 
die den normalerweise antibindenden Zust~inden bindenden Charakter verleiht. 

Des barri+res de potentiel apparaissent sur les courbes d'6nergie de liaison de certains ions de 
mol6cules diatomiques. L'origine de ces barri6res est discut6e pour le cas prototype d'un 61ectron 
unique se d6plaqant dans le champ de deux noyaux de charges arbitraires 6gales. Un proc6d6 pour 
d6terminer les points stationnaires des courbes d'6nergie de liaison est d6velopp6 et appliqu6 aux plus 
bas 6tats Eg et E,. L'6nergie de liaison est exprim6e comme somme de contributions de type promotion, 
coulombien et r+sonance; ces composantes sont 6tudi6es en fonction de la distance internucl6aire. 
Cette analyse d6monstre que les maxima d'6nergie sur les courbes Eg proviennent des r6pulsions 
coulombiennes ~ longue distance et ne sont pas li6s aux potentiels centrifuges du mouvement nucl6aire 
ou aux m~canismes de pr6dissociation. De plus, l'analyse montre que des attractions ~i longue distance 
peuvent se produire et introduire un caract+re liant darts des &ats normalement antiliants. 

I. Introduction 

It  h a s  b e e n  k n o w n  for  s o m e  t i m e  t h a t  p o t e n t i a l  b a r r i e r s  o c c u r  in  b i n d i n g  

e n e r g y  c u r v e s  of  c e r t a i n  d i a t o m i c  ions .  S u c h  b a r r i e r s  were  o b t a i n e d ,  in  

p a r t i c u l a r ,  f r o m  t he  t h e o r e t i c a l  c a l c u l a t i o n s  for  He~ -+ by  P a u l i n g  [1]  a n d  m o r e  

* Contribution No. 386 from the Department of Chemistry, Tufts University. Work done in 
part at the Ames Laboratory of the U.S. Atomic Energy Commission, Iowa State University, Ames, 
Iowa 50010. Contribution No. 2589. 
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recently by Fraga and Ransil [2]. The general homonuclear, two-electron 
system with arbitrary nuclear charges was investigated by Feinberg and Haas [3] 
who showed that such barriers arise for any value of the nuclear charge 
different from unity. Cohen and McEachran [4] recently reported related 
results for systems consisting of one-electron in the field of two nuclei with 
identical but arbitrary charges. 

In neutral systems potential barriers are known to arise for two reasons: 
the centrifugal potential of nuclear motion and the crossing of energy curves of 
different electronic states. While, occasionally, some authors have thought that 
these two mechanisms could also be relevant for the barriers found in the ionic 
systems mentioned, Pauling [1] has suggested an electrostatic explanation 
instead. 

Recently a new type of analysis for the origin of chemical binding has been 
developed and applied to H2 [5, 6]. It seemed a worthwhile challenge to test the 
efficacy of this approach by applying it to systems exhibiting the afore- 
mentioned kind of barrier, and the present note contains the analysis of the 
one-electron systems discussed in Ref. [4]. The investigation shows that this 
quantitative analysis is well suited to elucidate the origin of the barriers found in 
these systems. It demonstrates that they are unrelated to centrifugal effects or 
curve crossings, but indeed arise from long-range coulombic repulsions in 
agreement with Pauling's qualitative ideas [1]. Moreover, the analysis reveals 
that, under appropriate conditions, analogous long-range coulombic interactions 
may lead to attractive effects which, in fact, can introduce binding character 
into states normally considered antibinding. Thus, in addition to centrifugal 
effects and predissociation, long-range coulombic interactions represent another, 
independent source for - positive or negative - "h u mp s "  on binding energy curves 
of molecular-ions. 

2. Stationary Points on Energy Curves 

In the present paper we consider the (Z, Z) molecule-ion which consists of a 
single electron moving in the field of two nuclei, each with charge Z and 
separated by distance R. Since no electron repulsion terms appear in the 
molecular Hamiltonian operator, it is possible to deduce all properties of these 
systems from numerical results for the H2 molecule-ion. 

2.1. Exact Wave Function 

Let E~I(R,Z) be the exact electronic energy and EB(R,Z) the binding 
energy 1 of the (Z, Z) molecule-ion. Thus, 

Z 2 1 
Z 2" ~(R, z )=  Eol(R, Z) + ~ -  + ~- (1) 

t In the sequel, both the lowest X o ("binding") and X, ("antibinding') states will be discussed. 
In both cases, the energy difference E(molecule) - E(separated atoms) will be denoted by E u and called 
the "binding energy". The reason is that positive as well as negative values of E B will be found for both 
states. 
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This satisfies the virial theorem 

I dE"/R, Z) I 
TB(R, Z) + EB(R, Z) + R [ dR = 0 (2) 

where T"(R, Z) is the kinetic energy of binding. 
As mentioned by Cohen, Dorrell, and Mc Eachran [7], one has 

Eel(R, Z) = ZZ Eel(R, 1) (3) 
with 

= R Z .  (4) 

Here, Ee1(fi, 1) represents the exact electronic energy of H ;  calculated for the 
distance R between the protons. From this and Eq. (1), it readily follows that 

EB(R, Z)  = Z 2 f (K 1) + , (5) 

T"(R, Z) = Z 2 TB(R, 1), (6) 

(7) 

with V B being the potential energy of binding. 

If E~(R, Z) is stationary at R = R0, the virial theorem of Eq. (2) reduces to 

Tn(Ro, Z) + EB(Ro, Z) = 0. (8) 

Substitution of Eqs. (5) and (6) into this equation yields 

Z = 1 - Ro {E"(/~0, 1) + T"(Ro, 1)} (9) 

for finite values of Ro. Here, 

Ro = RoZ (10) 

is the value of R which corresponds to the distance R 0 at which the curve 
EB(R, Z) is stationary. Eq. (9) in conjunction with Eq. (10) gives then an implicit 
relation 

F(Ro, Z) = 0 

which determines the point R o where 8EB(R, Z)/SR vanishes. Thus, if the curves 
EB(R, 1) and TB(R, 1) are known for H~, it is possible to calculate the 
stationary points R o for EB(R, Z) and then the corresponding energies E~(Ro, Z). 
If TB(R, 1) vs. R is not available, it can be replaced by 

TB(R, 1) = En(_R, 1) - R [ 
dEB(R, 

dR ] (2') 
1) 

k 

to give 
- [_dE"(R_-o, 1)] 

Z = 1 - R~ [ dR ° . (9') 

The slope of the energy for H~- as a function of distance can be found by 
numerical differentiation of the exact energy curve. 

8* 
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Fig. 1. Stationary points (minima and maxima), Ro, and corresponding energies, EB(Ro, Z) on the 
Zo energy curves as functions of the nuclear charge Z (Guillemin-Zener approximation) 

Depending on the value of Z, one finds three cases: i) no stationary points; 
ii) one stationary point - at the equilibrium position; iii) two stationary points - 
one at the equilibrium position and the other at the maximum of a hump which 
appears between equilibrium and the separated atoms. A procedure for obtaining 
accurate information about these Stationary points is as follows: 

a) Rather than considering R o as depending upon the choice of Z, consider Z 
as a function of the variable Ro, according to the Eq. (9). Thus enter R0 and the 
corresponding values of TB(R0, 1) and EB(R0, 1) into Eq. (9) to obtain Z. 

b) Then obtain R o by substituting /~o and the corresponding Z value into 
Eq. (10). 

c) Finally, find EB(Ro, Z) the energy at the stationary point, by substituting 
Ro = RoZ and Z into Eq. (5). 

d) The sets of values of R o and EB(Ro, Z) found in this way are then plotted 
against the corresponding Z values for a given electronic state. 

If a)-d) are applied to the exact wave function for the Z o binding state of H~, 
one obtains the curves shown in Fig. 12. The lower curve is a plot of R o as a 
function of Z. The upper curve gives the corresponding energies, EB(Ro, Z). Thus, 
if a vertical line is drawn on the graph for a given value of Z, the intersections of the 
line with the curves yield the energies and locations of stationary points on the 
associated (Z, Z) energy curve. 

From these results we observe that the deepest energy minimum occurs for 
Z~0 .75  with an energy of -0.14a.u.  at Ro,-~2.0 a.u. 3. The exact values of Z 

z Actually, the Guillemin-Zener function [8, 9] has been used to generate these curves. This 
approximation is an excellent facsimile of the exact wave function. If the latter was used, the results 
would be indistinguishable from those displayed in Fig. 1. 

3 The value of Z ~ 0.5 given in Ref. [4] is in error. 
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and R o for which this occurs may be obtained by solving the system of 
equations consisting of Eq. (9) and 

O EB ( Ro , Z) 
- 0  

OZ 
or  

Z =  ½{1 - Ro[EB(R0, 1 ) -  TB(Ro, 1)]}. 

Secondly, when Z,-~ 1.44, the relative maximum and minimum coalesce to give 
everywhere repulsive energy curves for larger values of Z. 

2.2. Approximate Wave Functions 

It can easily be shown that Eqs. (3) and (4) apply also to approximate wave 
functions for H~. Furthermore, if Eq. (2) is satisfied by an approximate wave 
function for Z = 1.0, then by virtue of Eqs. (4), (5), and (6), Eq. (2) is valid for 
arbitrary Z as well. Thus, Eq. (9) and its consequences are directly applicable to 
approximate results for H2 if the wave function satisfies the virial theorem. This 
condition can always be met if the approximate function is scaled, and the scale 
parameter optimized by the variation method [10]. Since in this case EB(i~, 1) 
is variationally minimized, the corresponding values of EB(R, Z) are also minimized 
with respect to the scale parameter. 

2.3. Application to the Finkelstein-Horowitz Type Function 

As an application, consider the Finkelstein-Horowitz approximation to the 
ground and first excited state of H2 [11]. This function has the form 

~p+ = [2(1 + S)-~ [A + B] (11) 

where A and B are ls atomic orbitals. They contain orbital exponents, ~, which 
are variationally determined (independently for ~+ and ~_) for each internuclear 
distance so that ~+ = if+ (R) and ~_ = ~_(R). S is the overlap integral, and the 
" + "  and " - "  signs refer to the Z o binding state and lowest S, antibinding state, 
respectively. 

Recent variation calculations for this function have been reported elsewhere 
in the literature [6, 9]. If these results are used in conjunction with Eqs. (9), (10) 
and (5), one obtains the curves shown in Figs. 2 and 3 for the Z o and Z, states, 
respectively 4. 

A comparison of the curves in Figs. 1 and 2 shows that the Finkelstein- 
Horowitz results are in excellent qualitative agreement with those obtained from 
the exact function. If a careful quantitative comparison is made between the 
energy portions of these diagrams, one finds that, as Z increases, the exact function 
gives increasingly lower energies. The reason for this lies in the fact that the 
exact function (as reproduced by the Guillemin-Zener approximation) includes 
orbital distortion effects which become energetically more important as Z 

4 In the Zu case, Eq. (9) yields negative values of Z for small and intermediate Ro- These values 
of Z are mathematical artifacts of Eq. (9) and have no physical meaning. 
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increases 5. These are small, however, and for our purposes the Finkelstein- 
Horowitz  function serves well as basis for the energy curve analysis given in the 
next section. 

From Fig. 2 (or Fig. 1), one finds four types of energy profiles for the Zg state, 
each defined by a different range of Z values. These are schematically illustrated 
in Fig. 4 for the Finkelstein-Horowitz approximation. 

s See Ref. [6] for a detailed discussion of orbital distortion and its energetic consequences. 
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Fig. 4. Energy curve profiles (schematic) for the Z o state 

Fig. 5. Energy curve profiles (schematic) for the X. state 

For the X, state, Fig. 3 shows that all curves possess a shallow minimum when 
Z < 1.0. The strongest bond occurs for Z ~ 0.6 for which E B~ -0 .02  a.u. at 
R o ~ 9.0 a.u. 6. If Z > 1.0, the curves are everywhere repulsive. Fig. 5 schematically 
illustrates the two types of energy curves which occur for this state. 

3. Origin of Potential Profiles 

We now turn to the question why the energy curves depicted in Figs. 4 and 5 
change their behaviour so significantly when Z is varied. Of particular interest 
is the origin of the "hump" in the Xg state and the slight binding character of the 
Z, state. The analysis of these phenomena becomes simple if one uses the approach 
advanced and elaborated in Ref. [6]. It leads to the conclusion that all 
aforementioned deviations from H 2 behaviour have their origin exclusively in 
long-range coulombic interactions. Thus, it follows that, in addition to the 
centrifugal potential associated with nuclear rotational motion and the me- 
chanisms of predissociation, there exists a third reason for potential barriers, 
namely, long range coulombic repulsions. An interesting aspect of this mechanism 
is that it can introduce binding character into an "antibinding" state. 

3.1. Conceptual Partitionin 9 of the Energy for H 2 

In the approximation of Eq. (11), the energy difference 

E"(R, I) = E(H +) - E(H) 

can he partionecl as follows [6]: 

EB(R, 1) = EP(R, 1) + Eo-C(R, 1) + Et(R, 1) 

6 In Ref. [4], R o at the deepest minimum should be twice 4.6 a.u. 

(12) 
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where 
EP(R, 1)= ( A I - ½  V 2 - rE 11A) +½, (13) 

E e C ( R ,  1)= ( A I -  r~ 11A) + R -~ , (14) 

E~(R,  1) = { + 1/(1 + S)} { ( a l  - ½ V 2 - rA ~ -- r~ ~i B) 
(15) 

- S ( A I - ½  V2-r~, t - r~ l lA)}  • 

These three components have the following physical interpretations: 
a) E P is the energy difference between a hydrogen atom, whose ls wave 

function, A, is characterized by the orbital exponent ~ appropriate to the 
molecular wave function, and a hydrogen atom with ~ = 1.0, i.e., in its ground 
state. E P is called the promotion energy. 

b) E Qc represents the coulombic interaction of a neutral hydrogen atom 
(with ~ equal to that of the molecular wave function) and a proton located at 
distance R. This is called the quasiclassical energy. 

c) E I is the product of the two factors enclosed in curly brackets in Eq. (15). 
(The _H- signs in Eq. (15) apply to IF+ and ~p_, respectively.) The first factor is the 
bond order. The second is Mulliken's resonance integral. It has been shown 
elsewhere [5, 6] that E I describes the energetic consequences associated with 
electron sharing, that it contains the binding and antibinding effects arising from 
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the overlap of atomic orbitals, and that it can be interpreted as a wave 
interference of the atomic orbitals A and B. For this reason E t is called the 
interference energy. It is negative for the S o state and positive for the S u state. 

Figure 6 contains plots of EB(R, 1) and its three components for the X o 
state as functions of the internuclear distance. These plots show that E e, E Qc and 
E t provide a convenient basis for a conceptual elucidation of the binding 
"process". It is seen, in agreement with general ideas, that the interference term E ~, 
which is associated with overlap, sharing, and resonance, yields the bond 
forming energy lowering. The promotion energy is a measure of the orbital 
contraction whose Significance has been discussed in detail elsewhere [6]. It may 
be mentioned that for the exact wave function, the quasiclassical energy yields a 
slightly attractive curve due to orbital polarization [-6]. It is apparent from Fig. 6 
that the profile of the E B curve is the result of a competition between E ~, E e 
and E Qc, all of which decay exponentially with R. 

The dominating role of E ~ is further confirmed by an examination of the 
antibinding Zu state shown in Fig. 7. Whereas E e and E Qc do not differ 
significantly from those of the So state, the E x curve is now bond opposing 
throughout so that a repulsive E B curve results. 

3.2. Analysis of (Z, Z) Energy Curves 

In analogy to the scaling relationships of Eqs. (3)-(4), the wave function for 
the (Z, Z) molecule-ion at distance R is obtained from the H~ wave function by 
the scaling relationships 

~(z ,  R, r) = Z~w(1, ~, r-), (16) 

= ZR, ~-- Zr .  (17) 

For the approximation of Eq. (11), one has therefore 

~;(Z, R, r) = [2(1 + S')]- ~ [A' + B'] (18) 

where A' and B' are the appropriately modified ls orbitals. 
The energy of the (Z, Z) molecule-ion can be decomposed in a manner 

analogous to the partitioning of Eq. (12) for the H2 molecule-ion: 

E~(R, Z) = Ee (R, Z) + EQC(R, Z) + E~(R, Z) (19) 
where now 

E e(R, Z) = (A'[ - ½ V 2 " Z  r;. ~ ] A')  + 1 Z  2 ' (20a) 

E Qc(R, Z) = (A'I - Z rff ~ I A')  + Z 2 R -  1, (21 a) 

U(R, Z) = { + 1/(1 + S')} {(A'[ - ½ V 2 - ZrA ~ -- Zrff ~1B'5 
(22a) 

- S ( A ' [ - ½  VZ-Zr; ,  ~ - Z r ~  [A'>. 

In view of Eqs. (5)-(7), (16)-(18), these terms can be obtained from the 
corresponding quantities for H ; :  

Ee(R, Z) = ZZ Ee(_R, 1), (20b) 

EQC(R,Z)=ZZ{EeC(K, 1) + Z~_ 1 }, (21b) 

E~(R, Z) = ZZE~(R, 1). (22b) 
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The application of these equations to an analysis of the (Z, Z)energy curves 
is carried out for four specific examples: Z = 0.8 and 1.3 for both the 2; o and 2;,, 
states. The results are shown in Figs. 8, 9, 10, 11. In these graphs, the reduced 
energies Z -  2 E B, Z -  2 E ~', Z -  2 E ~2c, Z -  Z E ~ are plotted against the reduced inter- 
nuclear distance, Z R .  

Z o State 

A comparison of Figs. 8 and 9 with Fig. 6 shows that the reduced 
promotion energies, Z - 2 E  P, and the reduced interference energies, Z - Z E  t, are 
identical for all values of Z. The reduced quasiclassical energy is the only term 
which depends on Z. This is due to the fact that the long-range electron-nuclear 
attraction ( - Z .  1/R) does not cancel the nuclear-nuclear repulsion Z2/R,  if 
Z ~ 1. The difference is contained in the Z 2 ( Z -  1)/R term appearing in Eq. (21b). 
It shows that whereas the long range behaviour of E °-c is exponential for 
Z = I . 0  [see Eq. (14)-1, it has a long-range R -x dependence for Z ¢ I . 0 :  
attractive for Z < 1.0, repulsive for Z > 1.0. Since E e and E t maintain their 
exponential dependence upon R, the quasiclassical term becomes a major 
influence on the shape of the binding energy curve if Z ¢ 1.0, whereas it is not for 
Z--1.0. If Z < 1.0, it reinforces interference to enhance the reduced binding 
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Fig, 8. Energy partitioning for the I:0 state for Z = 0.8 as functions of the internuclear distance 
(Finkelstein-Horowitz approximation) 

Fig. 9. Energy partitioning for the N 0 state for Z =  1.3 as functions of the internuclear distance 
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Fig. 10. Energy partitioning for the Z, state for Z = 0.8 as functions of the internuclear distance 
(Finkelstein-Horowitz approximation) 

Fig. 11. Energy partitioning for the 2:. state for Z = 1.3 as functions of the internuclear distance 
(Finkelstein-Horowitz approximation) 

energy. For Z > 1.0, it effectively opposes interference; it introduces the hump for 
1.0 < Z < 1.2; it raises the minimum above the dissociation limit for 1.2 < Z < 1.37; 
and it renders the curve everywhere repulsive for Z > 1.37. 

Z u S t a t e  

Similar reasoning explains the behaviour of the Z, states shown in Figs• 10 
and 11 for Z=0 .8 ,  1.3 as compared to that of H I  shown in Fig. 7. As before, 
the reduced promotion and interference energies are identical for all values of Z, 
whereas the quasiclassical term acquires the same attractive or repulsive long- 
range behaviour as in the Z0 state. In the Z, state, it successfully opposes the 
antibinding interference energy for Z < 1.0 to the extent that the E, curve 
becomes slightly binding. For Z > 1.0, it reinforces interference and thereby 
enhances the repulsive character of these curves. 

4. Remarks 

The present results were obtained by an analysis of the Finkelstein- 
Horowitz approximation. An analogous analysis can be made for the Guillemin- 
Zener function which represents a close approximation to the true solution for 
H~. It is apparent that the same conclusions would be reached with only slight 
quantitative modification. 
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A similar type of analysis can also be applied to results for the two-electron 
case reported in Ref. [3]. However, a significant difference is found between the 
one- and two-electron cases. Whereas in the one-electron case the long-range 
behaviour of the quasiclassical energy is given by Z ( Z  - 1)/R,  the quasiclassical 
energy of the two-electron case has the long-range behaviour (Z - 1)2/R, which is 
repulsive tor all Z va 1.0. Thus humps result for Z < 1.0 as well as for Z > 1.0. 

Analogous characteristics can be expected in binding energy curves for more 
complex molecular-ions. 
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